This is a review submitted to Mathematical Reviews/MathSciNet.

Reviewer Name: Konstantopoulos, Takis

Mathematical Reviews/MathSciNet Reviewer Number: 68397

Address:

Department of Mathematics Uppsala University PO Box 480 SE-75106 Uppsala SWEDEN takis@math.uu.se

Author: Bernyk, Violetta; Dalang, Robert C.; Peskir, Goran

Title: Predicting the ultimate supremum of a stable Lévy process with no negative jumps.

MR Number: MR2932671

Primary classification:

Secondary classification(s):

Review text:

Consider a zero-mean α -stable Lévy process $(X_t)_{0 \le t \le T}$ on a finite time interval [0,T] with Lévy measure supported on $(0,\infty)$, and let $S_T := \sup_{0 \le t \le T} X_t$. The goal of the paper is the study of stopping times τ , with values in [0,T], such that X_{τ} is as close as possible to the overall supremum S_T , as measured by an L_p -norm:

$$V := \inf E(S_T - X_\tau)^p,$$

where the infimum is taken over all stopping times τ . Assume 1 .The latter inequality ensures that*p*-th moments of X are finite. This is not astandard optimal stopping problem because it involves the whole path. However,by a series of clever transformations the problem is reduced to standard one.These transformations are based on the following key properties: (i) reflectionon the maximum, and (ii) the fact that

$$Y := (S_t - X_t)_{0 \le t \le T},$$

the so-called Skorokhod reflection, is a strong Markov process. The facts that X has no negative jumps (spectrally positive Lévy process) and that the law of S_t has been studied by the authors in a recent paper [Bernyk *et al.* 2008], also play an important role in the solution of the problem. Take T = 1, without loss of generality (X is self-similar). Property (i) is used to give

$$E[(S_1 - X_t)^p \mid \mathcal{F}_t^X] = (1 - t)^{p/\alpha} E\left[\left(\frac{Y_t}{(1 - t)^{1/\alpha}} \lor \widetilde{S}_1\right)^p \mid \mathcal{F}_t^X\right]$$

where \mathcal{F}_t^X is the natural history of X and \widetilde{S}_1 is an independent copy of S_1 , and this shows that V can be obtained as the solution of the optimal stopping problem

$$V = \inf EF(\tau, Y_{\tau}),$$

for the deterministic function F determined by the previous display. This, being a time-varying optimal stopping problem, is further reduced by the deterministic (strictly increasing) time change

$$[0,\infty) \ni s \mapsto t \in (0,1]; \quad (1-t)^{p/\alpha} = e^{-s},$$

resulting into

$$V = \inf E\left\{e^{-p\sigma}E\left[(e^{\sigma}Y_{t(\sigma)} \vee \widetilde{S}_{1})^{p} \mid Y_{t(\sigma)}\right]\right\} \equiv \inf E\left\{e^{-p\sigma}G(e^{\sigma}Y_{t(\sigma)})\right\},$$

where the infimum is taken over all stopping times σ with values in the new time axis $[0, \infty)$, and where G is a deterministic function completely specified by the law of S_1 . Noticing further that the strong Markov process $e^s Y_{t(s)}$ is a member of the family

$$Z_s^z := e^s (z \vee S_{t(s)} - X_{t(s)}), \quad z \ge 0,$$

of (time-homogeneous) strong Markov processes $(Z_s^0 = e^s Y_{t(s)})$, the problem becomes a standard one in the area of optimal stopping (see, for instance, Kyprianou 2006, Chapter 9, for the Lévy case):

$$V(z) = \inf E\{e^{-p\sigma}G(Z_{\sigma}^{z})\}.$$

The rest of the paper is concerned by solving this difficult problem by solving a fractional free-boundary problem of Riemann-Liouville type. The optimal stopping time is the first entrance of Z into a set D, which translates into an optimal stopping time

$$\tau_* = \inf\{0 \le t \le 1 : S_t - X_t \ge z_* (T - t)^{1/\alpha}\}$$

for the original problem. It is shown that there is $\alpha_* \in (1,2)$ and a strictly increasing function $p_*: (\alpha_*, 2) \to (1,2)$ satisfying $p_*(\alpha_*+) = 1$, $p_*(2-) = 2$ and $p_*(\alpha) < \alpha$ for $\alpha \in (\alpha_*, 2)$ such that, for every $\alpha \in (\alpha_*, 2)$ and $p \in (1, p_*(\alpha))$, τ^* is optimal, and z_* is the unique root to a transcendental equation which depends on α and p. Moreover, if either $\alpha \in (1, \alpha_*)$ or $p \in (p_*(\alpha), \alpha)$ then it is not optimal to stop when $S_t - X_t$ is sufficiently large. The authors remark that this in sharp contrast to the Brownian motion case (formally obtained by setting $\alpha = 2$) and that this is due to how the transition from light to heavy tails is balanced by the parameter p.

References used in the review:

V. Bernyk, R.C. Dalang and G. Peskir (2008). The law of the supremum of a stable Lévy process with no negative jumps. Annals Probab. 36, 1777-1789.
A.E. Kyprianou (2006). Introductory Lectures on Fluctuations of Lévy processes with Applications. Springer-Verlag, Berlin.