This is a review submitted to Mathematical Reviews/MathSciNet.
Reviewer Name: Konstantopoulos, Takis
Mathematical Reviews/MathSciNet Reviewer Number: 68397

Address:

Department of Mathematics
Uppsala University
PO Box 480
SE-75106 Uppsala
SWEDEN
takis@math.uu.se
Author: Bernyk, Violetta; Dalang, Robert C.; Peskir, Goran
Title: Predicting the ultimate supremum of a stable Lévy process with no negative jumps.
MR Number: MR2932671
Primary classification:
Secondary classification(s):

Review text:

Consider a zero-mean α-stable Lévy process $\left(X_{t}\right)_{0 \leq t \leq T}$ on a finite time interval $[0, T]$ with Lévy measure supported on $(0, \infty)$, and let $S_{T}:=\sup _{0 \leq t \leq T} X_{t}$. The goal of the paper is the study of stopping times τ, with values in $[0, T]$, such that X_{τ} is as close as possible to the overall supremum S_{T}, as measured by an L_{p}-norm:

$$
V:=\inf E\left(S_{T}-X_{\tau}\right)^{p}
$$

where the infimum is taken over all stopping times τ. Assume $1<p<\alpha$. The latter inequality ensures that p-th moments of X are finite. This is not a standard optimal stopping problem because it involves the whole path. However, by a series of clever transformations the problem is reduced to standard one. These transformations are based on the following key properties: (i) reflection on the maximum, and (ii) the fact that

$$
Y:=\left(S_{t}-X_{t}\right)_{0 \leq t \leq T}
$$

the so-called Skorokhod reflection, is a strong Markov process. The facts that X has no negative jumps (spectrally positive Lévy process) and that the law of S_{t} has been studied by the authors in a recent paper [Bernyk et al. 2008], also play an important role in the solution of the problem. Take $T=1$, without loss of generality (X is self-similar). Property (i) is used to give

$$
E\left[\left(S_{1}-X_{t}\right)^{p} \mid \mathcal{F}_{t}^{X}\right]=(1-t)^{p / \alpha} E\left[\left.\left(\frac{Y_{t}}{(1-t)^{1 / \alpha}} \vee \widetilde{S}_{1}\right)^{p} \right\rvert\, \mathcal{F}_{t}^{X}\right]
$$

where \mathcal{F}_{t}^{X} is the natural history of X and \widetilde{S}_{1} is an independent copy of S_{1}, and this shows that V can be obtained as the solution of the optimal stopping problem

$$
V=\inf E F\left(\tau, Y_{\tau}\right)
$$

for the deterministic function F determined by the previous display. This, being a time-varying optimal stopping problem, is further reduced by the deterministic (strictly increasing) time change

$$
[0, \infty) \ni s \mapsto t \in(0,1] ; \quad(1-t)^{p / \alpha}=e^{-s}
$$

resulting into

$$
V=\inf E\left\{e^{-p \sigma} E\left[\left(e^{\sigma} Y_{t(\sigma)} \vee \widetilde{S}_{1}\right)^{p} \mid Y_{t(\sigma)}\right]\right\} \equiv \inf E\left\{e^{-p \sigma} G\left(e^{\sigma} Y_{t(\sigma)}\right)\right\}
$$

where the infimum is taken over all stopping times σ with values in the new time axis $[0, \infty)$, and where G is a deterministic function completely specified by the law of S_{1}. Noticing further that the strong Markov process $e^{s} Y_{t(s)}$ is a member of the family

$$
Z_{s}^{z}:=e^{s}\left(z \vee S_{t(s)}-X_{t(s)}\right), \quad z \geq 0
$$

of (time-homogeneous) strong Markov processes $\left(Z_{s}^{0}=e^{s} Y_{t(s)}\right)$, the problem becomes a standard one in the area of optimal stopping (see, for instance, Kyprianou 2006, Chapter 9, for the Lévy case):

$$
V(z)=\inf E\left\{e^{-p \sigma} G\left(Z_{\sigma}^{z}\right)\right\}
$$

The rest of the paper is concerned by solving this difficult problem by solving a fractional free-boundary problem of Riemann-Liouville type. The optimal stopping time is the first entrance of Z into a set D, which translates into an optimal stopping time

$$
\tau_{*}=\inf \left\{0 \leq t \leq 1: S_{t}-X_{t} \geq z_{*}(T-t)^{1 / \alpha}\right\}
$$

for the original problem. It is shown that there is $\alpha_{*} \in(1,2)$ and a strictly increasing function $p_{*}:\left(\alpha_{*}, 2\right) \rightarrow(1,2)$ satisfying $p_{*}\left(\alpha_{*}+\right)=1, p_{*}(2-)=2$ and $p_{*}(\alpha)<\alpha$ for $\alpha \in\left(\alpha_{*}, 2\right)$ such that, for every $\alpha \in\left(\alpha_{*}, 2\right)$ and $p \in\left(1, p_{*}(\alpha)\right)$, τ^{*} is optimal, and z_{*} is the unique root to a transcendental equation which depends on α and p. Moreover, if either $\alpha \in\left(1, \alpha_{*}\right)$ or $p \in\left(p_{*}(\alpha), \alpha\right)$ then it is not optimal to stop when $S_{t}-X_{t}$ is sufficiently large. The authors remark that this in sharp contrast to the Brownian motion case (formally obtained by
setting $\alpha=2$) and that this is due to how the transition from light to heavy tails is balanced by the parameter p.
References used in the review:
V. Bernyk, R.C. Dalang and G. Peskir (2008). The law of the supremum of a stable Lévy process with no negative jumps. Annals Probab. 36, 1777-1789.
A.E. Kyprianou (2006). Introductory Lectures on Fluctuations of Lévy processes with Applications. Springer-Verlag, Berlin.

